Transport of cytoskeletal elements in the squid giant axon.

نویسندگان

  • M Terasaki
  • A Schmidek
  • J A Galbraith
  • P E Gallant
  • T S Reese
چکیده

In order to explore how cytoskeletal proteins are moved by axonal transport, we injected fluorescent microtubules and actin filaments as well as exogenous particulates into squid giant axons and observed their movements by confocal microscopy. The squid giant axon is large enough to allow even cytoskeletal assemblies to be injected without damaging the axon or its transport mechanisms. Negatively charged, 10- to 500-nm beads and large dextrans moved down the axon, whereas small (70 kDa) dextrans diffused in all directions and 1000-nm beads did not move. Only particles with negative charge were transported. Microtubules and actin filaments, which have net negative charges, made saltatory movements down the axon, resulting in a net rate approximating that previously shown for slow transport of cytoskeletal elements. The present observations suggest that particle size and charge determine which materials are transported down the axon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon.

A major issue in the slow transport of cytoskeletal proteins is the form in which they are transported. We have investigated the possibility that unpolymerized as well as polymerized cytoskeletal proteins can be actively transported in axons. We report the active transport of highly diffusible tubulin oligomers, as well as transport of the less diffusible neurofilament polymers. After injection...

متن کامل

Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon.

Cytoplasmic filaments, separated from the axoplasm of the squid giant axon and visualized by video-enhanced differential interference contrast microscopy, support the directed movement of organelles in the presence of ATP. All organelles, regardless of size, move continuously along isolated transport filaments at 2.2 +/- 0.2 micron/sec. In the intact axoplasm, however, movements of the larger o...

متن کامل

Single microtubules from squid axoplasm support bidirectional movement of organelles.

Single filaments, dissociated from the extruded axoplasm of the squid giant axon and visualized by video-enhanced differential interference contrast microscopy, transport organelles bidirectionally. Organelles moving in the same or opposite directions along the same filament can pass each other without colliding, indicating that each transport filament has several tracks for organelle movement....

متن کامل

P13suc1 associates with a cdc2-like kinase in a multimeric cytoskeletal complex in squid axoplasm.

P13suc1 sepharose-conjugated beads were used to extract the kinases that phosphorylate neurofilaments in the squid giant axon. Using Western blots and in vitro kinase assays, we demonstrated the presence of an active cdc2-like kinase and its putative regulators such as cyclin E, p13, and p67 in axoplasm and a P13-axoplasm complex (P13-Ax). Protein kinase A (PKA) and casein kinase (CK) I and II ...

متن کامل

Spatial Patterns of Threadlike Elements in the Axoplasm of the Giant Nerve Fiber of the Squid (loligo Pealii L.) as Disclosed by Differential Interference Microscopy and by Electron Microscopy

The giant nerve fiber of the squid (Loligo pealii L.) has been investigated in situ, and in fresh and fixed preparations, by differential interference microscopy and electron microscopy. A continuous, three-dimensional network, composed of threadlike elements, was disclosed in the axoplasm. The threadlike elements in the axoplasm are twisted as a whole into a steep, right-handed helix. In a per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 92 25  شماره 

صفحات  -

تاریخ انتشار 1995